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Abstract

Over the last decade, the generation of massive Electronic Health Records (EHR)
has allowed researchers to explore the secondary use of these data in the field of
biomedical informatics researches. Recent researches showed that Deep Learning
(DL) models are efficient in collecting important features from textual EHR data and
predicting a disease diagnosis. Many DL research experimenters have approached
automatic prediction of the International Statistical Classification of Diseases and
Related Health Problems (ICD) codes from clinical notes as a disease diagnosis
task. However, these approaches tend to predict wrongly because of the lack of
knowledge behind the medical entities present in the clinical notes. This thesis
introduces KG-MultiResCNN - Knowledge Guided Multi-filter Residual Convolutional
Neural Network , a Deep Neural Network (DNN) model that utilizes external knowl-
edge of the medical entities in clinical text for better prediction. The model uses the
Wikidata Knowledge Graph (KG) to extract embeddings of the medical entities. The
KG embeddings and the word embeddings combined pass through multiple convo-
lution filters and residual blocks to finally predict the ICD codes. As a differential
diagnosis approach, the model predicts the relevant ICD codes while rejecting the
non-related codes. Extensive experiments with MIMIC-III data showed that KG-
MultiResCNN significantly outperformed the current state-of-the-art model and
other baseline approaches.
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1 Introduction

Over the past decade, the ease of curating, maintaining, and sharing electronic data
has motivated healthcare providers and hospitals to slowly adapt from a paper-
based approach to Electronic Health Records (EHR). EHR data from millions of pa-
tients are now routinely collected across diverse healthcare institutions [14]. Ac-
cording to the Office of the National Coordinator for Health Information Technol-
ogy (ONC 1) report in the USA, nearly 84% of healthcare providers globally have
already adopted digital administration, which made a rapid growth of EHR gener-
ation between the year 2008 to 2016 itself[3]. The data generation has skyrocketed
with about 50 Petabytes of data being generated worldwide every year [135]. These
EHRs contain large amounts of longitudinal patient data generated as a byproduct
of daily clinical activities. From all the current generated EHR data, a wide variety
of data types can be identified. The types include structured data such as - basic de-
mographics, drug details, diagnoses results, and laboratory tests, medical images,
and unstructured free-text clinical notes. Based on the different literature [106] [53]
[35] available, we can categorize the EHR data into mainly 3 types -

• Descriptive: Descriptive data contains a patient’s health-related details like
age, gender, blood pressure, and other symptomatic data.

• Diagnostic: Diagnostic data contains the clinical diagnosis results in text and
images format for a patient.

• Decision: Decision data contains the detailed decision made by physicians or
doctors based on descriptive and diagnostic data of a patient. While descrip-
tive and diagnostic data are mostly structured, decision data are often free text
types, making it unstructured.

Even though a massive amount of EHR data are being generated and stored every
day, at least 97% of these digitally archived data remain underutilized [1]. While pri-
marily designed for improving healthcare efficiency from an operational standpoint,
many studies [17] [55] have found a secondary use of this vast trove of underutilized
EHR data. In the field of biomedical informatics applications EHR data provides an
excellent opportunity for improving data-driven decision making in hospitals and
the health care sectors[1]. However, analyzing and acquiring valuable information
from these vast volumes of EHR data is not only expensive for human computation
but also time-consuming and often beyond human ability [63]. This manual data
analysis process is often considered "black art," requiring creativity, trial-and-error,
and sometimes luck[33].
Artificial intelligence (AI) and Machine Learning (ML) address this issue of man-
ual processing by facilitating both speed and accuracy in meaningful information
extraction. In particular, various data mining and ML research works like medi-
cal concept extraction [81][56], patient trajectory modeling [34], disease inference

1https://www.healthit.gov/
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[139][9], and clinical decision support systems are benefited by the use of patient
data contained in EHR systems. The meaningful use of these EHR data also facil-
itates opportunities to grow from individual-level to population-level research in
biomedical informatics [52].
Based on various types of EHR data, different approaches [74] [71] [98] [104] of ML
techniques have been explored. For example, for image-related EHR data, more
advanced Deep Neural Networks (DNN) have shown promising results in object
detection and segmentation [101]. Whereas for textual EHR data, Natural Language
Processing (NLP) has been used, and it focuses on analyzing text to infer mean-
ing from words. In recent years, Deep Learning (DL) [44] has seen exponential
growth, largely based on the new technology-driven computational power and the
availability of massive digital datasets. To this end, DL methods have observed re-
markable improvements in the ability of machines to understand and manipulate
various types of data such as images and language. The advancement of DL has al-
lowed NLP approaches to adapt deep learning techniques (called DL-NLP) and has
proven useful with increased accuracy and efficiency [65] [40] [46] [127] [28]. Two
of the most frequently used DL methods are Recurrent Neural Networks (RNNs)
[82], and Convolutional Neural Networks (CNNs) [7]. RNNs and CNNs have been
successfully applied in different domains for various free-text analysis tasks such as
text classification [27], sentiment analysis [137], summarization [134], and machine
translation [48].

1.1 Problem Statement and Thesis Motivation

The rise of DL-NLP has motivated ML researchers to tackle some crucial challenges
in diagnostic decision making, such as temporality in working with EHR data. EHR
data is often recorded in a timely event fashion, which means a patient’s visit can
be dependent on the history of illness. Temporality is particularly important for
chronic diseases where symptoms start appearing gradually and rapidly[75]. In
EHR data, all these sequential temporal events are captured promptly. Free-text
clinical notes such as discharge summary, physician notes, and hospital nursing
observation notes contain all the temporal incidence of a patient. This sequential
temporal pattern of EHR data makes it harder for traditional machine learning algo-
rithms to understand and capture the temporal dependency and clinical relevance
of the data.
EHR data also contains information about multiple other unobserved chronic con-
ditions such as hypertension, diabetes, asthma, COPD, epilepsy, and osteoarthri-
tis. In clinical terms, it is called multi-morbidity. Despite the increasing concerns
about multi-morbidity, professional caregivers under-diagnosed up to 71% of multi-
morbid patients [49]. A possible reason could be that physicians frequently miss di-
agnosing diseases outside their field of specialization. Traditional models also have
not shown auspicious results when it comes to predicting multiple diagnosis out-
comes [23].
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The time factor is another issue that troubled many patients as diagnosis of some
disease takes a very long time (for some cases several years) [4]. In addition, some
rare diseases are hard to determine by the physicians as the symptoms are often
atypical and can point in many different directions making the exact disease diag-
nosis too time-consuming. Data-driven methods could help in analyzing the data
and lower the disease diagnosis time to a considerable amount [38].
Recent works[23][110][19] on DL-NLP include using CNN and RNN with patients’
textual EHR data with the temporal sequence of structured events to face the chal-
lenges of disease prediction, as mentioned earlier. Choi et al. [23] implemented
a deep learning model called "Doctor AI" based on RNN and used temporal se-
quence EHR data to predict multiple disease diagnoses. "Doctor AI" achieved a
score of 79.58% recall on benchmark datasets and outperformed baseline models.
However, the data used in Doctor AI are from a single data source, and it is not
entirely random. Therefore, the approach had to undergo considerable data pro-
cessing to create structured data for their model. In real life, EHR data is generated
from various sources, and most of these data are highly heterogeneous and free-
text in nature. Traditionally, input features to an ML algorithm use hand-crafted
raw data depending on the practitioner’s credibility, expertise, and domain knowl-
edge. However, this process often leads to losing crucial information essential for
improving ML models. Therefore, for better learnability, a model should allow EHR
data that can be used without much data processing. For example, as an earlier ap-
proach, different research works[126][88][87][124][39][78][76] attempted to predict
disease from free-text clinical notes. Derived by the massive computational power
and faster GPUs [20], DL approaches can process the textual EHR data easily and
quickly. However, DL models can not directly process textual data. As an addi-
tional step, DL methods on textual data often come with an extra embedding layer
that provides a high dimensional embedding vector for a word token. DL-NLP
models with this extra embedding layer use the embed vectors of the text to pre-
dict the results. Based on the different embedding options such as Word2Vec[83],
Glove[93], ELMO[95], and Bert[120], different DL-NLP models for disease diag-
nosis applications have been explored. From the different available applications,
"Patient Phenotyping"[32] [26][131][132] and "Risk Prediction" [24][64][21][136] are
mainly explored as a singular disease prediction or a singular outcome prediction.
As a more complex and multiple disease prediction task the application of "Auto-
matic ICD Coding" [84][11][69] has been researched. In the ICD code prediction
task, DL approaches try to predict the ICD code most suited for a clinical text. Inter-
national Statistical Classification of Diseases and Related Health Problems (ICD) is
the global representation of a disease or a clinical procedure. Hospitals and health-
care providers generally assign the ICD codes to a patient’s admission for better
understandability of the actual disease, easier maintenance of diagnostic informa-
tion, and billing [85][18][10]. DL approaches like CAML[84] attempted the ICD code
prediction task as a multi-label prediction task. They used a simple CNN network
with an additional label attention mechanism to predict ICD codes from patients’
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free-text discharge notes. Even though the model performed fairly, it failed to pre-
dict ICD codes from a varied set of discharge summary notes. As an alternative,
Fei Li and Hong Yu [69] argued that a single and fixed-length CNN layer might
not be sufficient to capture the detailed features of a clinical text. As a suggestive
and current state-of-the-art approach, they used a multi-filter residual CNN to cap-
ture the detailed feature representation of a clinical document. The result showed a
significant improvement over the CAML model. However, the model failed to cap-
ture the similarities between varied medical terms present in the clinical document.
Clinical documents are generally filled with many clinically important words. The
meaning of those words is hard to capture from just a clinical text unless some exter-
nal knowledge is provided. For example, to identify the similarity between the two
sentences, "The patient showed signs of high fever" and "current symptoms indicate
acute febrile response," the model must need external knowledge that "fever" and
"febrile response" are similar terms. Moreover, the model failed to identify the im-
portant rare terms present in the text, thus making faulty predictions. These existing
problems motivate this thesis to create a model that uses clinical text data guided by
external medical knowledge. And then use the data to train a DL-NLP model that
can predict multiple ICD codes associated with the text and thus predict the disease
outcomes from textual EHR data.
I will sequentially discuss the research questions and then the proposed method to
solve the problems in the below sections.

1.2 Research Questions and Thesis Contribution

The existing challenges in current DL-NLP models set the aim of this thesis to in-
vestigate the following research questions -

• RQ1: How can we use external medical knowledge with raw heterogeneous
textual EHR data for better disease prediction?

• RQ2: How can we use DL to predict multiple diseases outcomes while remov-
ing non-related diseases using free-text EHR data?

Thesis Contribution:

This thesis addresses the problems as mentioned earlier in existing models and the
research questions in the following way -

• As an enhancement of the model MultiResCNN[69] by Fei Li and Hong Yu,
this thesis implements an extra embedding layer along with the word em-
bedding layer to the model. The additional embedding layer uses the impor-
tant medically significant tokens/entities of types such as treatment, test, and
problem; then, it provides a knowledge graph embedding vector for those to-
kens. The model is then trained with the concatenated embedding vectors of
the text words and the medical entities present in the text.
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• As a novel approach, this thesis is the first that uses two embedding layers for
a model in the domain of biomedical research.

• Along with the knowledge graph embedding, this thesis calculates the Term
Frequency-Inverse Document Frequency (Tf-idf) value of each word present
in the text and then uses that as a weighting factor to the word embedding
vector of the words.

• To deal with the massive size of embedding vectors provided by the two em-
bedding layers, this thesis uses two residual (ResNet) blocks to extract better
feature representation, unlike the state-of-the-art MultiResCNN[69] that used
only one residual block.

This thesis introduces the model Knowledge Guided Multi-Filter Residual Convolu-
tional Neural Network (KG-MultiResCNN). The model is trained on the Medical In-
formation Mart for Intensive Care (MIMIC-III) discharge summary notes, and it
predicts diagnosis ICD codes using the free-text notes. Discharge summary notes
are essential for this research as they contain vital patient information such as pa-
tient demographics, medical history, family history, admission observations, and
lab test results. The discharge summary notes also contain the disease diagnosis of
the patient. However, the disease diagnosis mentioned in the discharge summary
notes is often superficial and falls short of providing a specific diagnosis. For ex-
ample, a disease diagnosis in the discharge summary note can be "Restrictive lung
defect," which does not mention the actual disease. There can be multiple condi-
tions for a "Restrictive lung defect," such as "Acute bronchospasm," "Atelectasis," or
"Mediastinitis." A diagnosis ICD prediction system can identify the proper disease
as each disease has its unique ICD code. The KG-MultiResCNN does the job by
predicting the actual diagnosis ICD codes from discharge summary notes. The KG-
MultiResCNN model is developed on top of the MultiResCNN[69] designed by Fei
Li and Hong Yu. This thesis utilizes the Python code implementation from the pub-
licly available repository of MultiResCNN2. As a differential diagnosis approach,
KG-MultiResCNN is trained not only to learn the correct ICD codes but also the
wrong ICD codes that should not be associated with the text. The model is evaluated
against the baseline models of CAML[84], DR-CAML[84], and MultiResCNN[69].
The code for this thesis is publicly available on GitHub3. The thesis is done using
the Python programming language. Specifically, this thesis used Jupyter Notebook
to implement the model as a single file application. The KG-MultiResCNN model
is trained on the high-end GPU of "NVIDIA TITAN V" provided by the department
of Web Science and Technology4 at the University of Koblenz-Landau.

2https://github.com/foxlf823/Multi-Filter-Residual-Convolutional-Neural-Network
3https://github.com/PrantikGoswami/KG-MultiResCNN
4https://west.uni-koblenz.de/
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Thesis Outline:

This paper is organized as follows.

• Section 2 discusses the related works done in the field of disease diagnosis on
EHR data. More specifically, it highlights the ICD code prediction task as it is
more relevant for the scope of this thesis.

• Section 3 introduces the proposed KG-MultiResCNN model and describes the
methodology. Then, in further subsections, the architecture of the model is
described. Finally, the implementation detail of the model is explained.

• Section 4 describes a general structure of EHR data first. Then introduces the
data repository used for this thesis. The section further provides the data col-
lection method and the description of the collected data.

• Section 5 presents the experimental setup starting with the data processing
step to training and finally parameter tuning of the model.

• Section 6 provides the evaluation details of the model. Further data process-
ing and experimental setup steps are discussed to evaluate the model against
existing works.

• Section 7 presents the results and findings of the thesis. It also provides a result
comparison against baseline approaches.

• Section 8 and section 9 concludes the paper with a summary of the thesis, key
findings, limitations, and future improvements.
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2 Related Work

The use of AI and ML to learn from medical data has been researched for a long.
EHR data have provided the data needs for all those research works.
Even though EHR data provides rich digital data [6], a recent study of the medical
literature found that predictive models built with EHR data use a median of only
27 variables. Furthermore, it relies on traditional data generalization methods and
is built using data from a single-center [43]. This section provides an overview of
different works with EHR data and their data collection methods.
In different ML fields, research works are done with different types of EHR data.
In the field of Computer Vision (CV), imaged-related EHR data have been experi-
mented with extensively because CNNs have achieved human-level performance in
object classification tasks [101]. Other works involved Reinforcement Learning (RL)
[111] [51]. A pre-learned supervised learning model keeps learning and correcting
from expert demonstration and is accomplished either by learning to predict the ex-
pert’s actions directly via supervised learning or by inferring the expert’s objective
[5] [100].
For the scope of our research, this thesis mainly focuses on supervised learning with
textual EHR data. So, this section highlights some well-known works in the field of
NLP and DL-NLP.

2.1 NLP

NLP focuses on analyzing textual data. According to Sheikhalishahi et al. [104],
NLP models have benefitted hugely and have seen tremendous growth as more
textual EHR data generates rapidly. Classical NLP depends on various manually
defined rules (e.g., regular expression patterns, terminology lookup, dictionary) for
extracting specific information from free-text data. Defining a uniform set of rules
can be challenging, as one set of rules that applies to one particular database might
not be used to another. Liang et al. [71] suggested a basic information extraction
model that extracted the key concepts and associated categories in EHR raw data
and transformed them into reformatted clinical data in query-answer pairs. This
NLP approach involved lexicon creation where a lexicon was generated by manu-
ally reading sentences in the training data and selecting clinically relevant words
for query-answer model construction [71] [36] [80]. As an improvement to the sys-
tem, the method emphasizes schema design consisting of a list of physician curated
question-answer pairs that the physician would use to extract symptom information
towards the diagnosis. Tokenization and word embedding also helped in embed-
ding tokens with features to represent the semantics and similarities of any query
word in the higher dimensional space [71]. The research collected a total, 101.6
million data points from 1,362,559 pediatric patient visits. Furthermore, the data
were analyzed to train and validate the framework. Even though keyword search
and word tokenization received a good amount of success, the unstructured, noisy
nature of the narrative text (e.g., grammatical ambiguity, synonyms, misspelling,
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or negation of concepts) is still a bottleneck for this process. Additional rules or
other more complex criteria have been added to the keyword search to improve
the performance. In a typical rule-based system, standards need to be pre-defined
by domain experts. For example, Wiley et al. [125] incurred a rule-based system
for statin-induced myotoxicity detection. First, they developed a set of keywords
for their work by manually annotating about 300 patients’ allergy listings. Then
they developed a set of rules on top of the keywords to detect contextual mentions
around the keywords. This study achieved a positive predictive value (PPV) score
of 86 percent and a negative (NPV) score of 91 percent. Some of the other important
literature [86][129][70][47] applied rule-based NLP tools and achieved modest suc-
cess.
Even though these research works got some attention, much manual work was
needed to prepare the data. This problem brings to the need for a deep learning
approach on NLP.

2.2 DL-NLP

Over the last decade, extensive research works [65] [40] [46] [127] [28] have shown
the potential of deep learning approaches on NLP tasks, including text classification,
language translation, POS tagging, entity recognition, sentiment analysis, and para-
phrase detection. Different domains[133] such as finance, automobile, e-Commerce
have already benefited hugely from the application of DL-NLP. Researchers[126]
[88] [87] [124] [39] [78] [76] have also exploited the possibility of using DL-NLP
approaches in the healthcare domain because the healthcare domain produces a
massive amount of free-text electronic data. One of the main applications in the
healthcare domain is medical diagnostic decision-making[66][112], which has been
explored for decades. Motivated by the fact that medical diagnosis using DL ap-
proaches has already reached human-level accuracy on image data, DL approaches
on text data gained much attention in the same application.

Patient Phenotyping:

Derived by the enormous computation power, DL approaches can utilize long free
text EHR data for disease detection. One particular application area for EHR where
DL approaches are used is called patient phenotyping[32]. As a diagnostic ap-
proach, patient phenotyping aims to predict patients’ medical condition or any risk
factor based on a patient’s symptoms and other medical conditions. According to
Collobert et al.[26], DL approaches help to identify symptomatic details and other
intrinsic structures from high dimensional textual data like EHR data. Word vector
[97][13] representation from unstructured text has provided a foundation to the DL
approaches in clinical phenotyping and disease diagnosis. One of the initial DL ap-
proaches with Deep Neural Network (DNN) on clinical phenotyping was done by
Beaulieu-Jones et al.[13]. Their research used a neural network structure to learn the
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free text structure of a patient’s discharge report. From the data, they constructed
different phenotypes to identify a patient’s disease. Their approach outperformed
traditional ML models such as SVM, Decision Tree, and Random Forest. In more
advanced research, Wu et al.[126] used CNN with word vectors from pre-trained
embedding models to recognize named entities from free-text data. The extracted
entities are then classified for different phenotypes. Their model outperformed the
conditional random field (CRF) baseline, model. In most recent works, Gehrmann et
al.[41] used CNN to do clinical phenotyping by detecting medical phrases from the
text. They used MIMIC-III discharge summary notes for their model evaluation, and
it turned out that their model could predict some difficult phases that core domain
experts can only identify. As an extension of this work, Yang et. al. [131] utilized a
word and sentence level CNN architecture to do clinical phenotyping in determin-
ing ten medical disorders. They proposed that other than using just word level em-
bedding, addition of sentence level embedding gives more contextual meaning to
the embedding and CNN network performs better in this setting. In their proposed
model "ws-CNN" they first created a sequence of word embedding vector for a sen-
tence and then used the summing and average pooling mechanism on the word
vectors sequence to create the corresponding sentence vector. Then they concate-
nated the word embedding and their corresponding sentence embedding together
to form the final feature embedding. Their result showed that the model achieved
the largest performance gain in classifying medical conditions. They also concluded
that large number of samples and good quality of data per label is the most impor-
tant criteria for a better performing model. To include additional information for the
betterment of quality and quantity of data, Liang et. al.[132] utilized a knowledge
guided CNN model in combination with rule-based features from clinical text. In
their study they first utilized a rule based system to identify medical trigger terms
in a text. For each trigger terms they created the embedding vectors by using a pre-
trained (trained on MIMIC-III data) word2vec model. For the additional knowledge
they used medical knowledge base. They used a process called MetaMap[8] that can
help in linking clinical text to create Concept Unique Identifiers (CUIs) of Unified
Medical Language System (UMLS)[15]. These CUIs can provide entity embeddings
as additional knowledge to the model. Their CNN model combined with trigger
term embedding and knowledge entity embedding is used on the i2b2 obesity chal-
lenge dataset[117]. The results showed that their model achieved an overall f1-score
of 67% in finding common medical conditions for obesity. Other than medical phe-
notyping, DL approaches are used hugely in risk and mortality prediction tasks.
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Risk Prediction:

Guided by the fact that DL approaches can identify patterns in a text for a partic-
ular outcome disease, many researchers[24][116][72][21][124][88] have explored DL
techniques in predicting future clinical outcomes such as mortality, hospital read-
mission, and any other medical risks or diseases. Based on the outcome prediction
of these approaches, the research works can be categorized into mainly two parts-
1) One-time outcome (e.g., Heart failure, Hypertension, Suicide risk, Mortality) 2)
Temporal outcome (e.g., Hospital readmission, Heart failure within six months, fu-
ture disease prediction from historical medical data)
The most straightforward approach between this two is one-time or static outcome
prediction, as it does not consider the temporal dependency of the data. As an initial
work, Liang et al.[72] used a Deep Belief Network (DBN) to create a patient vector
representation by training each layer of the DBN separately. Then they used the pa-
tient vectors to support vector machines (SVN) to predict the disease finally. They
used the model on the data of patients with Hypertension. Their model showed
promising results in predicting Hypertension from free-text clinical data. In a sim-
ilar approach, Choi et al.[24] used a linear model of several ANNs to predict the
outcome of heart failure. Their method used a new way to represent the free-text
clinical document as a combination of critical medical concepts co-occurring in the
text. So the model learns the distribution of the co-occurring words to predict dis-
ease. Their result showed that other than using simple word representation of the
documents, the medical concept representation helps predict better outcomes. In
another disease detection approach, Lauritsen et al. [64] have presented a scalable
deep learning method to detect sepsis early with heterogeneous data that includes
hospitalizations within and outside of the ICUs from multiple health centers. They
used a CNN-LSTM based model approach to detect feature and temporal patterns
present in the data. The data included health data on all citizens 18 years or older
with residency in four Danish municipalities (Odder, Hedensted, Skanderborg, and
Horsens). The result showed that the model achieved an AUROC of 0.856 and an
mAP of 0.79 when evaluated 3h before sepsis on the vital sign test data. Cheng et al.
[21] experimented with capturing temporal features from sparse EHR data by using
CNN as a chronic disease detection approach. In their research, they represent the
EHR data of each patient in a temporal matrix fashion with time as one dimension
and events as the other. Then the data is passed through a series of convolutional
layers to extract the most significant features. Different fusion mechanism such as
"early fusion," "late fusion," and "temporal fusion" was applied to the EHR data. The
fusion mechanism helped to incorporate the temporal smoothness into the data. The
model showed promising results in the early prediction of onset risk when evalu-
ated on a real-world EHR data warehouse with an EHR record of 319,650 patients
over four years.
The other approach on DL involves temporal outcome prediction. The primary pur-
pose of these approaches is to predict an outcome of a disease within a specific time
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interval by analyzing time series EHR data. Lipton et al.,[73] in their work, used
an Long Short-Term Memory (LSTM) network (a variant of RNN) to predict disease
outcomes based on temporal data. Their work used a target replication strategy to
predict disease from a list of 128 diseases in each time step. To reduce the over-
fitting of their model, they used additional information from the patients’ data as a
technique called auxiliary outputs. They achieved the best performance after assem-
bling the LSTM model with a standard MLP of 3 layers. Doctor AI[23] is another
successful approach with Recurrent Neural Network (RNN) based deep learning
model developed to predict future disease diagnosis and medical prescriptions. Be-
cause of the RNN architecture, Doctor AI can assess the entire medical history as
time sequence data to extract essential features over a while. Doctor AI fed its neu-
ral network with data from 700,000 EHRs and randomly combined them to make
and test new variables for disease risk. As an extension of the DoctorAI project,
Choi et al.[25] used a GRU network for predicting heart disease during several time
prediction windows. They used a time sequence clinical event vector representation
from the patients’ historical EHR data. They achieved better performance over their
previous baseline approach. In another time series prediction approach, Nguyen et
al. described a deep learning model named Deepr[87]. The model is a multi-layered
architecture based on Convolutional Neural Networks (CNNs). The network learns
how to extract features from medical records to predict the risk for the patients. The
medical records are collected as a sequence of visits, and for each visit, a subset of
coded diagnosis, lab test, and text data are combined. The model showed promising
results in predicting unplanned readmission within six months. Following similar
work, Pham et al. created a model called DeepCare[96]. They argued that LSTM
networks better capture the temporal irregularities present in a patient’s EHR data.
For the model, they used two embedding vectors created via the skip-gram embed-
ding approach. Utilizing the current clinical concepts in the data, one diagnosis
code embedding vector and another intervention code embedding vector were cre-
ated. The result showed that their model performed well for predicting readmission
for both diabetic and mental health patients. In a different approach to predicting
mortality in ICU, Kim et al. developed a CNN-based model called PROMPT[58].
They used the model to predict the mortality of critically ill children who are ad-
mitted to the ICU. They created two groups of data for vital signs development in
the last 24 hours window from the data. The first group is the positive instance
where they extracted data between 6 to 60 hours before the patient’s death. The
second group is the negative instance where the patient survived during the stay in
the ICU. The CNN model learns the vital signs representations from the data and
predicts a binary outcome. For mortality prediction within 6 hours before death,
PROMPT achieved ad AUROC of 96%. They showed that their approach outper-
formed the LSTM based approaches. In a recent practice, Zhang et. al.[136] adopted
a DNN model to predict three risk prediction tasks - in-hospital mortality, hospi-
tal readmission, and extended stay prediction. Their work argued that combining
the structured and unstructured EHR data can provide a better present represen-
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tation. They used two fusion models, namely "Fusion-CNN" and "Fusion-LSTM,"
to create a document vector representation of the free-text clinical notes. Whereas,
for the static patient demographic details and other admission-related details, they
used one-hot encoding. The document vector and the one-hot encoded vector to-
gether serve as the patient representation vector. The patient representation vector
is finally classified using a binary classifier to predict the result on the data. They
applied the model on MIMIC-III data and showed that the approach performed bet-
ter and produced more accurate predictions for the three risk prediction tasks. Even
though these works showed promising results, a general multi-label prediction task
seemed more important when the symptoms were unknown and hard to predict.
As a solution, the disease ICD code prediction task became a topic in biomedical
research.

Automatic ICD Coding:

The International Classification of Diseases (ICD) is a global term representing a dis-
ease diagnosis or procedure performed on a patient. The World Health Organization
(WHO) maintains and provides this list of pre-defined ICD codes. Most physicians
and healthcare providers have already adopted the ICD code for different reasons
such as - better usability and maintainability, reimbursement, accessible storage,
and retrieval of diagnostic and procedural information[18][85]. All the clinical EHR
documents are linked with the corresponding ICD codes for every patient’s hospital
admission as part of hospital services. However, assigning an ICD code to a free-
text EHR document is not a simple task as it is laborious, expensive, error-prone,
and requires a good amount of domain (health care) knowledge[91]. As a solution,
the research on automatic ICD coding from free-text clinical notes has been ongoing
for more than two decades[62][30]. The old methods of automatic ICD coding were
mainly dependent on handcrafted approaches[103]. With the rise of better technol-
ogy and more data processing power, different research scopes started opening. The
early works on ICD code prediction tasks were based on traditional supervised ML
approaches. Perotte et al.[94] used Support Vector Machine (SVM) to classify "flat"
and "hierarchical" ICD codes. Koopman et al.[61] used SVM to classify hierarchical
ICD codes related to cancer from free-text death certificates in a similar job. In DL
approaches in the last five years, there has been much improvement in ICD coding.
To start with, Shi et al.[105] used character-level LSTM to learn the similarities be-
tween the discharge summary notes and the description of ICD codes. In a different
approach, Prakash et al.[99] created a neural memory network model called "C-
MemNNs" that learns representations from free-text data and predicts top-50 and
top-100 codes. In their approach, they used external knowledge from Wikipedia
to enhance the model performance. In the Recurrent Neural Network (RNN) ap-
proach, Vani et al.[119] created a Grounded Recurrent Neural Network (GRU) that
utilizes label-specific dimensions for the hidden units to predict specific diseases.
Baumel et al.[12] used Hierarchical Attention-bidirectional Gated Recurrent Unit
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(HA-GRU) to assign multiple ICD codes to patients’ discharge summary notes. As
an embedding approach, Wang et al.[122] argued that projecting word and label vec-
tors in the same embedding vector space yields better results. For their approach,
they proposed a mixed embedding model. The model calculates the cosine similar-
ity between the word embedding vector and the label vector to predict the labels.
The following list contains the most recent works in automatic ICD prediction in
clinical disease diagnosis as a baseline reference to this thesis.

• As one of the recent essential and works, Xu et al.[130] approached the ICD
prediction task as a combination of 3 model outputs. Their work implemented
an ensemble-based approach to deal with unstructured, semi-structured, and
tabular data. They included DL methods to classify uninstructed and semi-
structured clinical notes, and for the tabular data, they utilized a decision tree
to classify the data. For the unstructured texts, they used a CNN-based model
called "Text-TF-IDF-CNN." The model used word2vec[83] word embedding
for each word in the text. The word embedding is filtered through multi-filter
convolution layers and then collected together using max pooling. Finally, the
max pooled features from the convolution layers and the Tf-IDF features of the
whole text are concatenated to form the final feature vector. The final feature
vector is then passed to a fully connected layer for the classification. For the
semi-structured text data, they used character-level CNN and bidirectional
LSTM for a task called "Diagnosis-based Ranking (DR)." In this particular task,
they created a low-dimensional diagnosis vector from the text and mapped it
into the same vector space of the ICD code description vector. According to
their approach, the model minimizes the distance between the two vectors to
create a similarity ranking. For the tabular data, they created a binary feature
vector for each type of data. Furthermore, using the data to a decision tree for
a binary multi-class classifier. They used MIMIC-III clinical notes and other
tabular data such as lab events, prescriptions, microbiology events, and chart
events for evaluation. In their approach, the MIMIC-III ICD codes were used
to predict the top 32 clinically significant ICD codes. The result concluded that
adding multiple modalities of data yields better results.

• As a label weight attention approach, Mullenbach et al.[84] argued that DL
approaches on ICD coding tasks perform better with an attention mechanism.
Their approach proposed a single-filter CNN network model. Additionally,
they proposed label attention following the convolution operation. They called
their model Convolutional Attention for Multi-Label classification (CAML).
As a solution to the multi-label classification problem, their model utilized
a pre-trained word vector for each word in the discharge summary note to
predict multiple ICD codes finally. For their work, they used MIMIC-III and
MIMIC-II discharge summary notes to predict the complete list of ICD codes
present in the MIMIC data. They also used their model to predict the top 50
frequently occurring ICD codes as an additional evaluation step. The results
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showed that their approach significantly outperformed all the past methods.
They finally concluded that adding the label attention layer helped the model
find the most significant text features, thus improving the performance.

• As an extension of CAML[84], Tian Bai, and Slobodan Vucetic[11] created a
knowledge source integration system on top of the baseline model. In their
work, they proposed that added external knowledge improves the model per-
formance significantly. Their Knowledge Source Integration (KSI) framework
uses the superficial knowledge from Wikipedia to provide extra weight on
the input text for the prediction of a particular ICD code. Motivated by the
fact that the DL models were not very good in predicting rare diseases, they
showed that adding KSI with CAML helped predict better results along with
rare diseases. To evaluate their model, they used the MIMIC-III dataset, and
for each ICD code in the MIMIC-III dataset, they extracted the disease docu-
ment from Wikipedia.

• As the most recent state-of-the-art model, Fei Li, and Hong Yu[69] proposed
another improvement over CAML[84]. They approached the ICD code pre-
diction problem as a multi-label prediction task. They used free text discharge
summary notes to predict multiple possible ICD codes related to that dis-
charge summary text. For the multi-label prediction, they used a one-hot
encoded label vector. The label vector has the dimension same as the total
number of ICD codes. For example, if the task predicts ICD codes from 100
ICD codes, the label vector is 100 dimensional. The ICD codes that are true
for the discharge note are set to 1, and the other codes are set to 0. For the
modeling, they argued that the multiple filter CNN network performs much
better than using a single filter CNN network. Along with the CNN filters,
they used one residual network[50] following each of the CNN filters. They
called their model Multi-Filter Residual Convolutional Neural Network (Mul-
tiResCNN). The input layer used the word2vec[83] model that transformed
each word in the discharge summary notes into a word vector. The word
vectors then passed through the CNN filters and residual block to create a
feature distribution of the input text. Following the work of CAML[84], they
employed a label attention mechanism for better prediction accuracy. Their
approach created a weight matrix for the label distribution and multiplied it
with the text feature distribution. Intuitively this process learns the impor-
tant word features that are important for a particular label and applies extra
weight to those features. The weight attention features are finally classified
using a fully connected layer. They experimented with their approach for pre-
dicting ICD codes on the MIMIC-III discharge summary notes dataset. For
evaluation of their model, they used MIMIC-Full codes and MIMIC-50 codes.
The result showed that using multiple filters CNN network, the prediction ac-
curacy of the model increases significantly. Furthermore, their result showed
that adding a layer of a residual network increases the performance even more.
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3 Approach

3.1 Overview

This thesis introduces KG-MultiResCNN - Knowledge Guided Multi-filter Residual Con-
volutional Neural Network , a model that can predict disease ICD codes given an un-
structured clinical text. The model aims to predict disease diagnosis and thereby
help doctors and medical staff in diagnostic decision making. It does so by extract-
ing important features from the clinical text to replicate human-level decision sup-
port. The intuition is that certain words/tokens in a text hold the maximum value.
For example, given a clinical text "The patient is admitted with severe chest pain.", the
model should be classified the text as "Heart Attack". Internally the model should be
able to learn the importance of the key terms and their context in the text to classify
the text to a precise disease class. For the above example, the goal of the model is
to learn the importance of the term "chest pain" to predict the class as "Heart Attack
(Acute myocardial infarction)" - 410.00 (ICD 9). The best way to achieve the goal is to
provide the model with a tokenized text for each document of clinical text. For a
given text of |M | words, the model is passed with each word from the text, and the
model learns the representation of each text to understand the context and is finally
able to find a correlation between the texts and the resulting disease. As an added
attention step, the model is provided with the key terms separately after they are
extracted using an Entity Extraction method. The combined representation of the
tokens and the extracted entities is then fed to the model for the training. Internally
the model consists of multiple CNN layers that capture the feature representations.
Finally, the model output is evaluated against the ground truth value using a loss
function to adjust the model parameters properly. In the next section, the architec-
tural details of the methodology are discussed.

3.2 KG-MultiResCNN

The proposed model for this thesis is called KG-MultiResCNN, whose architecture
is shown in figure 1.
The whole architecture is divided into six parts, and each part is described below.

3.2.1 Input Word Embedding Layer

The input layer creates an embedding matrix (E) out of the sequence of the words
of a text document. The word sequence is denoted as w, and w is defined as w =
{w1, w2, ...., wn}, n is the sequence number or the number of words present in the
text. For each word, there is a pre-trained embedding vector created by training the
word2vec model [83]. As a weighting mechanism, the Tf-idf score of each word is
calculated. The score is then multiplied with the embedding vector of that word. If
the Tf-idf score of a word becomes 0, then the pure embedding vector of that word
is used. The embedding vector can be formulated as e = u× g where u is the word
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Figure 1: The general architectural diagram of "Kg-MultiResCNN" follwing the
work of Li and Yu[69].

embedding and g > 0 is the Tf-idf score of that word. × indicates the scalar vactor
multiplication. Therefore, the input embedding matrix will be E = {e1, e2, ..., en}
where ei is the final word embedding vector of ith word and ei ∈ Rde . de is the
dimension of each word vector.

3.2.2 Input KG-Embedding Layer

The model is fed with an extra embedding input layer to strengthen the feature
extraction process. From the text of word sequence, the most significant medical en-
tities are extracted using a pre-trained Bert model5. The entity sequence is denoted
as t, which is defined as t = {t1, t2, ...., tm}, m is the number of medically significant
entities extracted by the entity extraction model. The extracted clinically relevant
tokens, or entities are used to query on a knowledge graph to get the knowledge
graph embeddings of the tokens. These embeddings are used to create the addi-
tional KG embedding matrix K. For each entity tj the corresponding embedding
kj of dimension dt is extracted from the knowledge graph. Hence the knowledge
graph embedding matrix becomes, K = {k1, k2, ...., km} ∈ Rm×dt . The word em-
bedding matrix and the KG embedding matrix jointly serve as the input layer to the
model.

5https://huggingface.co/samrawal/bert-base-uncased_clinical-ner
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3.2.3 Multi-Filter Convolution Layer

To extract the features from varying lengths of texts, I followed the work of Fei Li
and Hong Yu [69] to create a multi-filter 1 dimensional Convolutional Neural Net-
work architecture. The strategy is to pass the varied length of texts through a par-
allel set of CNN networks. However, the kernel size is of different lengths for each
CNN filter. If there are p no of filters, then let us assume the kernel size of pth filter
would be kp. And the convolution filter would be Wp ∈ Rkp×de×dc where de is the
input dimension and dc is the output dimension. In general, the filter/convolution
operation on a vector reduces the size of the output vector. However, in this ap-
proach, I wish to keep the size of the output vector the same as the input. We can
achieve that by adding the right kernel size, padding, and stride. We can use the
equation provided by Pytorch6 to calculate the right parameter numbers.

Lout =

[
Lin + 2× padding − dilation× (kernel_size− 1)− 1

stride
+ 1

]
By setting the stride = 1, dilation = 1, kernel_size = k, and padding = floor(k2 ) we can
achieve our goal of same output size. With all these adjustments, the 1-Dimensional
convolution operation can be formalized as :

{p,j(E) =W T
p ⊗ Ej:j+kp−1

Hp =

n∑
j=1

tanh({p,j(E))

Here, ⊗ represents a convolution operation and {p,j indicates the output of pth con-
volution where the input matrix position starts from jth row and ends at the row
j+ kp− 1. Hn indicates the final layer output after the convolution output is passed
though tanh activation for total n sequence of input and then concatenated (indi-
cated by

∑
) together. A typical 1-D convolution architecture is shown in figure

2 where the convolution filter Wp slides through the embedding matrix E with a
stride of 1.

3.2.4 Residual Convolution Layer

The output of each convolutional filter again goes through a series of convolution
filters. Following the work of Fei Li and Hong Yu [69], this series of convolution
filters together is called a residual block. Each residual block consists of 3 convolu-
tion layers. To formulate it mathematically, if we consider that we have p number of
multi-filter convolution layer then each of these p number of convolution filter has
a series of q number of residual blocks on top of it. Each of the residual blocks have

6https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
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Figure 2: A general architectural diagram of 1-D convolution with stride 1.

3 convolution filters namely rpq1 , rpq2 , rpq3 and their corresponding filter weights are
Wpq1 ,Wpq2 ,Wpq3 where rpq is the qth residual block on top of pth multi-filter con-
volution layer. The output of each convolution filter inside a residual block can be
formulated as

{pq1,j(X) =W T
pq1 ⊗X

j:j+kpq1−1

Hpq1 =

n∑
j=1

tanh({pq1,j(X))

Hpq2 =
n∑
j=1

{pq2,j(Hpq1)

Hpq3 =
n∑
j=1

{pq3,j(X)

Hpq = tanh(Hpq2 +Hpq3)

Here, + represents element-wise addition. Hpq represents the final output from
the qth residual block that used the initial input matrix from the output of pth multi-
filter convolutional block. X is the input matrix to each of the residual blocks. The
first residual block receives the input as the output of the multi-filter convolution
layer, and the last residual block receives the input from its previous residual block.
Finally, the output of each of the final residual blocks is concatenated together to use
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in the next step. The final output can be formulated as

H =

p∑
1

Hpq

where p is the total no of filters used in the multi-filter convolution layer. The resid-
ual architecture is shown in figure 3 where the input Hp (from the CNN channel)
goes through a series of convolution filters Wpq1, Wpq2 and a shortcut convolution
filter Wpq3 to finally added together to form Hpq.

Figure 3: Architectural diagram of Residual Convolution Layer.

3.2.5 Attention Layer

The final output matrix H is typically reduced to a vector using the max-pooling
operation before passing it to a classifier. However, in this model, I used an ad-
ditional label attention step following the work of Fei Li and Hong Yu [69], and
Mullenbach et al. [84]. The idea is that some words have higher weights for a label
for multi-class classification. Therefore, the label attention can select the most rele-
vant k-grams from the text that can benefit in predicting the correct label. Formally
the procedure is to create a vector parameter U for the labels and then compute the
matrix-vector product HU . Then we use a softmax layer to obtain the word distri-
bution in the text.

α = softmax(HU)

α is the attention vector. To get the final vector representation from the attention
layer we again perform a matrix multiplication between the attention vector α and
the input matrix H . The final output is formulated as

V = αTH
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3.2.6 Output Layer

The output layer is a superficial linear layer that takes the input V from the attention
layer. The linear layer does the linear transformation on the incoming data and
outputs a vector of the size of the labels. The score vector of all the labels is obtained
using the sum-pooling operation on the output vector. The final probability vector is
calculated using sigmoid activation on the score vector for multi-class classification.
The whole process is formalized below.

Y = VW

where, W is the weight matrix and the shape ofW is ((p×dpq), l). Here, p is the total
number of convolution filters used in the multi-filter convolution step, and dpq is the
output dimension from the residual convolution layer. l is the output dimension, the
total number of labels that we are classifying. The score vector Ŷ can be formulated
as :

Ŷ = pooling(
l∑

j=1

Yij)

and the final predicted vector is :

Ỹ = σ(Ŷ )

3.3 Implementation

To begin with, the implementation of the model follows the work of Fei Li and
Hong Yu, [69]. For simplicity of the design and architecture, I used Jupyter Note-
book 7 provided by university Jupyter Hub 8 server. The implementation is a single-
page implementation yet structured like Object-Oriented Programming. In the be-
low passage, I will describe the implementation of the model in detail. The model
is implemented in such a way that it can take any text input. However, the text
inputs need to go through a mandatory data processing step that I have discussed
in the section 5.1. The data processing step is essential because the model can not
work on raw text data. The data processing step creates a vector representation
or embedding of each text input. To this end, I have used word2vec to create a
100-dimensional embedding vector for words/tokens in a text. These vector repre-
sentations are the inputs to the model.

In the first step of the model, an embedding layer is created, and this embedding
layer acts as a lookup table of the embedding. Figure 4 shows the general repre-
sentation of the input embedding layer. To this end, the embedding layer is created
with a total of 49342 unique words that are present in the training data (data split-
ting strategy is mentioned in section 5.1). The embedding layers receive a sequence
of ids representing the words or tokens of a text. Along with the ids, the embedding

7https://jupyter.org/
8https://github.com/jupyterhub/jupyterhub
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Figure 4: Word embedding and kg embedding layer structure.

layer receives the Tf-idf score of each word. This thesis utilizes "TfidfVectorizer"
from "scikit-learn"9 python package to generate the Tf-idf score of the words. Based
on the word sequence ids, the embedding layer fetches the embedding of each to-
ken. Each word embedding is then multiplied with the corresponding Tf-idf score
of the word that creates an input matrix. Next, as an additional step, another em-
bedding layer is implemented that provides extra knowledge graph embedding for
medically important tokens present in the text. The medical entity/token extraction
and generating their knowledge graph embedding process is discussed in section
5.4. To this end, the entity extraction method found 11247 unique medical named
entities from the training corpus. The KG-embedding produces a 200-dimensional
embedding vector for each unique medical named entity. The KG-embedding vec-
tors are reduced to 100-dimensional vectors using a linear filter to maintain unifor-
mity. Embeddings from both the embedding layers are concatenated to form the
final input embedding for a text. The input embedding is then passed to the multi-
filter residual network. The network structure is implemented dynamically based
on the chosen number of filters of CNN channels. To this end, I have chosen nine
filters of sizes 3, 5, 7, 9, 13, 15, 17, 23 and 29. The numbers indicate the kernel size of
each of the 1-dimensional convolution layers in the channel. As an example, Figure
5 shows the general architecture of the CNN channel with a filter size of 3. Each

Figure 5: A Multi-filter residual convolution layer structure of filter size 3.

9https://scikit-learn.org/
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CNN channel consists of a base convolution filter and multiple residual blocks. The
example in the figure shows a convolution channel with only one residual layer. The
base convolution layer has input and output channels of 100 and 100, respectively.
The 100-dimensional inputs from the embedding layer pass through the base con-
volution layer with a kernel size of 3, stride 1, and padding 1. The output from the
convolution layer produces another 100-dimensional vector that is the input to the
next residual block. Each residual block consists of two convolution layers placed in
series and one shortcut convolution layer. The first two sequential convolution lay-
ers take an input of 100 dimensions and reduce it to a 50-dimensional output. The
two convolution layers use kernel size of 3, stride 1, and padding 1. However, the
in-channel and out-channel sizes of the two convolution layers are (100, 50) and (50,
50), respectively. The shortcut convolution layer receives the same 100-dimensional
input from the base convolutional layer. It converts it into a 50-dimensional out-
put using a kernel size of 1 rather than 3, stride 1, and without any padding. The
output of the series of convolution layers and the shortcut convolution layer are
concatenated together to generate the final output vector of size 50 for each of the
multi-filter residual convolution networks. To this end, the nine convolution chan-
nels output is concatenated together to create a final vector of size 50× 9 = 450. The
450-dimensional output from the multi-filter convolution layer then goes to the out-
put layer for the final classification. Figure 6 depicts the architecture of the output
layer. The output layer starts with a label attention layer. As a starting point in the

Figure 6: The output layer structure.

output layer, a label attention weight matrix U ∈ R(p×d)×l is created using a linear
layer. For this thesis p = 9 for 9 convolutional channels and d = 50 for each of the
channel output dimensions. l = 6918 is the total number of unique labels present in
our training corpus. This makes the label weight matrix of shape (450, 6918). The
attention weight matrix (α) is created by matrix multiplying H and U after passing
through a softmax activation to get the input distribution. H ∈ Rm×(p×d) is the in-
put matrix to the output layer from the multi-filter convolution layer. m represents
the sequence number of input text. α ∈ Rm×l is the attention weight of each pair of
labels and a word. The attention output (V ∈ Rl×(p×d)) is obtained after multiplying
the two matrix αT and H . The output from the attention layer is finally fed to a lin-
ear layer with an in-channel of size (p× d) ad out-channel of size l. The linear layer
creates a weight matrix W ∈ R(p×d)×l. The final output vector (Y ∈ Rl×l) for all la-
bels is generated after the multiplication of V and W followed by the sum-pooling
operation.
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Implemented Model Structure:

The detailed structure of the full implemented model is shown in the below figures.

Figure 7: Full implemented architecture of "KG-MultiResCNN."
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4 Data

4.1 EHR Data

This thesis targets to learn a model from EHR data that is a systematic collection of
longitudinal patient’s health information such as symptoms, medication, lab tests,
procedures generated by each encounter of patients to the hospital or health care
provider [55]. However, the structure of EHR data varies hugely with various clini-
cal departments that are generating the data [140]. For example, a patient’s diagnos-
tic data generated by a doctor is very different from the diagnostic data generated by
the lab test department. From all the generated EHR data, we can categorize them
into three structural parts - structured, semi-structured, and unstructured [123]. We
can further categorize EHR data into various data types like images and text. For
the scope of this thesis, we are only considering unstructured textual EHR data. The
figure below shows an example of EHR data from a structural point of view.

Figure 8: Different textual EHR data structure [123].

This thesis focuses on unstructured raw text data because there is plenty of raw
EHR text data already available [14]. If a model learns to use raw text data, then the
model can be used for any other raw text data.
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4.2 Data Collection

Finding a suitable and available data source for this research is one of the major
challenges of this thesis. Because of privacy reasons, most of the research works
is done closely with the hospitals and the health service providers under specific
terms and conditions and maintaining acceptable privacy policies. However, there
are freely available data sources like CDC10, n2c2(formally i2b2)11[118] and Medical
Information Mart for Intensive Care (MIMIC)12 [2] [57] that can provide free health
data. For our research, I choose to use the MIMIC database for several reasons. First
of all, the MIMIC data is freely available. Secondly, there are a lot of research works
[69][84][45][130][136] already done on this database so using this data will help in
evaluating my approach against other approaches. Finally, MIMIC provides a huge
number of textual data records for patients. MIMIC is an extensive, freely avail-
able database that contains thousands of patient details from their Intensive Care
Unit (ICU) stay. The database is a part of PhysioNet13 repository that is maintained
by the MIT Laboratory for Computational Physiology14 and supported by the Na-
tional Institute of Biomedical Imaging and Bio-engineering (NIBIB)15. The data is
collected from the USA’s Beth Israel Deaconess Medical Center. Based on the col-
lected data over the years from the same medical center, there are two versions of
MIMIC data publicly available - MIMIC-II [2] and MIMIC-III[57]. The MIMIC-II
is the old version of the data that contains over 10 thousand patients record from
the ICU from the years between 2001 to 2008. Whereas the MIMIC-III is the newer
database that contains the records for over 40 thousand patients who were admitted
to the critical care unit between the years 2001 to 2012. For this thesis,s I have used
the MIMIC-III database as it has more records than MIMIC-II, and it is compara-
tively new. However, the publicly available version of MIMIC-III16 is a subset of the
actual MIMIC-III data, and it contains about 100 patients information; moreover, it
does not contain the free-text clinical notes data. Since this thesis is primarily based
on free-text data, getting the whole MIMIC-III data along with the free text data was
an essential step for this thesis. The full MIMIC-III data, specifically with the latest
version(v1.4), is restricted for authorized use only. To get the restricted data, I had
to complete a course on "Data or Specimens Only Research" under the "Human Re-
search" curriculum group. The course is provided by The Collaborative Institutional
Training Initiative (CITI Program)17 which is a program to provide training on the
trusted standard in human research, ethics, and data compliance. After finishing the
training, CITI provided a certificate for the course under the Massachusetts Institute

10https://wonder.cdc.gov/DataSets.html
11https://n2c2.dbmi.hms.harvard.edu/
12https://physionet.org/content/mimic2-iaccd/1.0/
13https://physionet.org/
14https://lcp.mit.edu/
15https://www.nibib.nih.gov/
16https://physionet.org/content/mimiciii-demo/1.4/
17https://about.citiprogram.org/
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of Technology affiliation. This particular certificate, along with a data compliance
agreement called "PhysioNet Credentialed Health Data Use Agreement 1.5.0," was
required to get the full version of MIMIC-III data. The CITI certificate is valid for
three years for an applicant, so according to the agreement, it is ethical to use the
data for three years by the applicant. After that period, a new certificate and a new
agreement are required to use the data.

4.3 Data Description

The MIMIC-III[57] database is an extensive data of size 6.2GB (zipped). This im-
mense database consists of 26 relation tables that contain de-identified patient in-
formation such as demographics, vital observations, measurements data made at
the ICU, medications, procedures, laboratory test results, imaging reports, mor-
tality, and clinical notes. In the entire database zip file, all these 26 tables are in-
cluded as CSV files. All these files are linked with a foreign key identifier col-
umn. A suffix of "ID" can identify the foreign key identifiers at the end of the
column. For example, a column with the name "SUBJECT_ID" is a unique value
representation of a patient. All the files having the column "SUBJECT_ID" are re-
lated to each other with this foreign key identifier. All the 26 files can be catego-
rized into mainly four categories. The first category is patients tracking. This cat-
egory contains the files "ADMISSIONS", "CALLOUT.CSV", "ICUSTAYS.CSV", "PA-
TIENTS.CSV", "SERVICES.CSV", "TRANSFERS.CSV". These files contain data re-
lated to a patient. The second category is critical care unit data. The files in this cate-
gory are "CAREGIVERS.CSV", "CHARTEVENTS.CSV", "DATETIMEEVENTS", "IN-
PUTEVENTS_CV.CSV", "INPUTEVENTS_MV.CSV", "NOTEEVENTS.CSV", "OUT-
PUTEVENTS.CSV", "PROCEDUREEVENTS_MV.CSV". These files contain the data
collected while the patient was in the critical care unit. The third category is the
hospital record system. This category contains the files "CPTEVENTS.CSV", "DIAG-
NOSES_ICD.CSV", "DRGCODES.CSV", "LABEVENTS.CSV", "MICROBIOLOGYEV-
ENTS.CSV", "PRESCRIPTIONS.CSV", "PROCEDURES_ICD.CSV". These files con-
tain the data that are collected for hospital record-keeping and billing to the patient
[57]. The fourth category is the dictionary. The files in this category are stated with
"D" to identify the dictionary files. The files are "D_CPT.CSV", "D_ICD_DIAGNOSE-
S.CSV", "D_ICD_PROCEDURES.CSV", "D_ITEMS.CSV", "D_LABITEMS.CSV." These
files are used as lookups for the shortcode used in other files. Out of these files, this
thesis is particularly concerned about mainly the files named "NOTEEVENTS.CSV"
and "DIAGNOSES_ICD.CSV." The "NOTEEVENTS.CSV" file contains the free-text
notes from the doctors, medical staff, nurses, physicians. It also contains free-text
notes from medical events such as radiology events, electrocardiography, echocar-
diography, and respiratory check events. With all these text notes, the "NOTEEVENT-
S.CSV" also contains the "Discharge summary" notes that contain a general descrip-
tion of the patient, starting from their medical history to final discharge notes. To be
specific the "Discharge Summary" report contains the following record types : "HIS-
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TORY OF PRESENT ILLNESS", "PAST MEDICAL HISTORY", "MEDICATIONS ON
ADMISSION", "ALLERGIES", "FAMILY HISTORY", "SOCIAL HISTORY", "PHYSI-
CAL EXAM AT TIME OF ADMISSION", "LABORATORY STUDIES", "BRIEF SUM-
MARY OF HOSPITAL COURSE", "DISCHARGE CONDITION", "DISCHARGE STA-
TUS", "DISCHARGE MEDICATIONS", "FOLLOW-UP PLANS", "FINAL DIAGNOS-
ES". However, these record types are not always uniform and in similar order
throughout the data records simply because of the very nature of the free text data
unstructured data. A typical example of "Discharge summary" note is shown in the
figure 9. Past research works [54][130][136] have shown favor in using the "Dis-
charge summary" notes as it contains an overall description of the patient’s stay
in the hospital. The text data in the "NOTEEVENTS.CSV" present in the combina-
tion of a patient (identified by "SUBJECT_ID") and a particular hospital admission
(identified by "HADM_ID") for that patient. This relation between a patient and the
admission makes it easier to combine the "NOTEEVENTS.CSV" with other files us-
ing the foreign key "SUBJECT_ID" and "HADM_ID." The other concerned file, "DI-
AGNOSES_ICD.CSV," contains the hospital-assigned diagnosis codes for patients
during their stay at the hospital. The diagnosis code uses the International Statis-
tical Classification of Diseases and Related Health Problems (ICD) system to rep-
resent a disease. In the clinical field, International Statistical Classification of Dis-
eases and Related Health Problems (ICD) codes[92][37] are the identifiers that can
describe a diagnosis and procedure done by a clinical institute for a patient. The
idea of ICD is to provide an internationalized system for health management. The
ICD system and its versions are managed by World Health Organization (WHO)18

that coordinates and maintains the health system under the United Nations system
19. To incorporate the changes in the medical field, the WHO updates the version
of the codes periodically. The current running ICD version is 10, which was ac-
cepted by the World Health Assembly in 1990 [90]. In MIMIC-III data, the ICD
code of the ninth revision is provided. To be specific, in MIMIC-III, the ICD code is
called The International Classification of Disease and Clinical Modification version
9 (ICD-9-CM). ICD-9-CM is the American adaptation of the ICD-9 code and is the
official diagnosis and procedures assign system in the USA[37]. The National Cen-
ter of Health Statistics (NCHS) and the Centers of Medicare and Medicaid Services
(CMS)20 are responsible for managing and maintaining the ICD-9-CM codes. The
ICD-9-CM contains more than 15,000 codes and follows a hierarchical code struc-
ture between the lengths 3 to 5. The codes with three digits are considered as the
heading category, and an extra 1 or 2 digits are added after a decimal separator
for more specific detail about the code[90]. For example21, code 787 is the heading
category for symptoms involving the digestive system. 787 code is further subdi-
vided between 787.0 to 787.9 for more specific detail. For example, 787.2 is the code

18https://www.who.int/about
19https://www.un.org/en/
20https://www.cms.gov/
21http://www.icd9data.com/
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for "Dysphagia," a sub-category under digestive system-related symptoms. 787.2
is then finally divided between 787.20 and 787.29 for even more specificity. For
example, code 787.21 indicates "Dysphagia in the oral phase." The heading cate-
gories are mainly classified into surgical, diagnostic, and therapeutic procedures.
The MIMIC-III "DIAGNOSES_ICD.CSV" file contains the ICD-9-CM diagnosis code
for a patient’s(indicated by "SUBJECT_ID") admission(indicated by "HADM_ID")
with a sequence number (indicated by "SEQ_NUM"). Each time a patient is assigned
to a diagnosis ICD-9-CM code, the sequence number is provided.

28



Figure 9: An example of "Discharge summary" note from MIMIC-III data.
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5 Experiment

5.1 Data Pre-Processing

As discussed in section 4, for this thesis, I am using MIMIC-III data. As a univer-
sal approach, this thesis inputs raw heterogeneous text. The MIMIC-III data also
provides patients’ clinical notes in a raw text format. However, ML models cannot
work with raw text data. Hence, I used data pre-processing to create machine read-
able representation out of the unstructured clinical text as a necessary step. The data
processing follows a sequential step. In the first step, I Followed the work of Fei Li
and Hong Yu [69]. I used "DIAGNOSES_ICD.csv" and "NOTEEVENTS.csv" to get
the ICD codes and clinical notes respectively for a patient using their SUBJECT_ID.
In their original work, Fei Li and Hong Yu [69] used "PROCEDURES_ICD.csv" along
with "DIAGNOSES_ICD.csv" to predict the procedural ICD codes and disease ICD
codes. However, unlike a general ICD code prediction task of Fei Li and Hong
Yu [69], this thesis focuses on predicting disease ICD codes. Because of this rea-
son, I only used the "DIAGNOSES_ICD.csv" to train the model so that it can pre-
dict only disease ICD codes. Following their process, two data frames are created
from "DIAGNOSES_ICD.csv" and "NOTEEVENTS.csv" using the pandas22 library
of Python. Then the two data frames are merged for the same patient (identified
by "SUBJECT_ID") and same hospital admission (identified by "HADM_ID"). The
"NOTEEVENTS.csv" file contains following category of notes namely "Discharge
summary", "Echo", "ECG", "Nursing", "Physician ", "Rehab Services", "Case Manage-
ment ", "Respiratory", "Nutrition", "General", "Social Work", "Pharmacy", "Consult",
"Radiology", and "Nursing/other". Fei Li and Hong Yu [69] in their work only con-
sidered the "Discharge Summary" reports. Table 1 shows the overall code coverage
of MIMIC-III notes.

Coverage Patients Hospital Admission Diag. ICD-9 Codes

MIMIC-III (All) 46520 58976 6984

NOTEEVENTS.CSV
(all categories)

46146 58361 6967

"Discharge Summary"
notes

41127 52726 6918

Table 1: MIMIC-III Code coverage statistics [54].

However, for this thesis, I am considering not only "Discharge summary" but also
"Nursing" and "Physician " reports. Because in the MIMIC dataset, there are 59652
records for discharge summaries, whereas for "Nursing" and "Physician" notes, there
are 223556 and 141624 records, respectively. Also, the "Nursing" and "Physician"

22https://pandas.pydata.org/

30



notes contain detailed and vital observations and symptoms of a patient, which are
lacking in "Discharge Summaries." Therefore, all the notes from "Discharge Sum-
maries," "Nursing," and "Physician" are combined to create one combined note for
a unique combination of the patient ("SUBJECT_ID") and admission ("HADM_ID").
To this end, I created three different data frames while concatenating the different
note categories for this experiment. The first one contains the notes only from "Dis-
charge summary." The second one is from "Nursing" and "Physician" and the last
one from all three categories. The reason is to compare and check how removing
"Discharge summary" and adding "Physician" and "Nursing" notes affect the ICD
code prediction. The notes then go through the process of tokenization, where I
am tokenizing the whole text into words. The process also involves removing un-
wanted texts (de-identified names, dates) and lower casing the words. The concate-
nated and processed notes are then joined with the disease ICD codes for the unique
combination of the patient ("SUBJECT_ID") and admission ("HADM_ID") to create
a complete record. To this end, the three concatenated data frame contains 52726,
9070, and 52993 records, respectively.

5.2 Generating Word Embedding

Since the primary task of this thesis is text classification, the text is the main input to
our model. With that goal in mind, I have discussed how the text is tokenized into a
list of words in the previous step. However, these tokenized words can not be fitted
into a model simply because of the fact that machine learning models only under-
stand numbers. So it was necessary to transform the words into numbers so that the
model could be trained. Following the work of Fei Li and Hong Yu [69], I used pre-
trained word2vec[83] model to create an embedding vector for the words. For word
embedding creation, I used the texts from the training set after the whole dataset
was split into train, validation, and test. The data splitting technique is discussed in
section 5.5. The word embedding generation process involves the prior task of cre-
ating a vocabulary. I used the training dataset for vocabulary creation and tokenized
all the texts into word tokens. The vocabulary can be defined as V = {v1, v2, ...., vn}
where, n is the number of unique words in the whole dataset. A document repre-
sentation is created using the vocabulary. A document record can be represented as
D = {d1, d2, d3, ..., dn} where di ∈ {0,R+}, i ∈ {0, n} is the ith dictionary word and
the value can be 0 or any positive non-zero real number R depending on the number
of occurrence of the word in the document record. Then a document matrix is cre-
ated for each record with their corresponding document vocab representation. The
document matrix can be represented as C = {D1, D2, D3, ...Dk} ∈ Rk×n, CT ∈ Rn×k
where k is the total number of record present in the dataset. Following the work
of Fei Li and Hong Yu [69], I have considered the records with words that have
appeared at least three different records. All the terms that have occurred in less
than three records are considered rare terms. The rare terms are deleted from the
document matrix (CT ) to create the final document matrix. Using the indices of the
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document matrix, a new vocabulary is created. Next, the indices numbers of the rare
terms are taken from the document matrix, and the corresponding positional words
from the vocabulary(V ) are deleted to create the final vocabulary. After the vocabu-
lary is created, the word2vec model is trained to create the word embedding for all
the words in the vocabulary. To do that, I used all the sentences from all the records
in the dataset so that the word embedding has contextual representations. Then, fol-
lowing the same approach of Fei Li and Hong Yu [69], I used the word2vec model to
train on the entire training dataset, with five epochs to create 100-dimensional em-
bedding vectors for each word. After the training, I saved each word’s embedding
into a file to create the word embedding layer for the model. The word embedding
layer creation is discussed in section 3.2.1. In the next step, we extracted the medical
entities from the text to use separate embedding for the words as a weighting factor
to the word embedding.

5.3 Entity Extraction

As an additional knowledge to the model, this thesis provides some extra infor-
mation about the model. The extra information is generated by collecting named
entities. The intuition is that certain entities carry maximum information in a text
for a text classification task. The thesis employs an entity extraction method to col-
lect meaningful entities from the text. Since the work is on clinical text data, I used
a pre-trained entity extraction model to extract medical entity types, namely "symp-
toms," "treatment," "test." The model is provided by Huggingface 23 which is a huge
library of Transformer[120] based models. "samrawal/bert-base-uncased_clinical-
ner"24 is the entity extraction model from the Huggingface library that I am using
for this thesis. The model is trained on the n2c2(formerly i2b2)25/VA challenge
dataset[118]. The dataset was released as part of the "Fourth i2b2/VA Shared-Task
and Workshop Challenges in Natural Language Processing for Clinical Data"26 chal-
lenge. One of the tasks of this challenge was to extract medical problems, tests, and
treatments. The data for this challenge was provided by MIMIC-II [102] [42], a clin-
ical database from Berth Israel Deaconess Medical Center, and the University of
Pittsburgh Medical Center. Discharge summary and progress notes are used from
these two databases to create the final dataset for the challenge. All the records
in the dataset are fully de-identified for privacy reasons and manually annotated
for the concept, assertion, and relation information extraction. The used model for
our entity extraction task has an overall accuracy of 94%, macro f1 score of 87%,
and weighted f1 score of 94%. For extracting "problem", "test", and "treatment" the
model has f1 score of 87%, 85%, and 86% respectively. After using the model on our
dataset, it identifies medically important entities related to "problem," "test," and

23https://huggingface.co/
24https://huggingface.co/samrawal/bert-base-uncased_clinical-ner
25https://n2c2.dbmi.hms.harvard.edu/
26https://www.i2b2.org/NLP/Relations/
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"treatment." These entities are then passed to the next step to generate knowledge
graph embeddings.

5.4 Generating KG Embedding

In this thesis, I am using knowledge graph embedding of medically sound enti-
ties as a weighting factor or extra attention on the word embedding. For this task, I
used PyTorch BigGraph (PGB)[67] which is an embedding system provided by Meta
Research27 (formerly Facebook Research) community. The system learns the node
and edges representations of massive knowledge graphs and embeds the nodes
and relations in the graph. The system aims to keep the similar entities/nodes of
a knowledge graph closer to each other in vector space while pushing apart unre-
lated nodes/entities. In other words, the embedding of similar nodes will be simi-
lar so that they can be closer to each other in the vector space. PGB was evaluated
on the large knowledge graphs of Freebase28, LiveJournal [68], YouTube[114] and
Twitter[16] social network graph. The result shows that PBG outperformed on large
knowledge graphs. As part of their research, the PGB also trained on the large Wiki-
data29 knowledge graph with 78 million entities and 4,131 relations. Moreover, the
Meta Research community has made the embedding for the entities publicly avail-
able30. The embedding dimension for each entity is 200, and the whole file with the
embedding of 78 million entities takes about 36Gib of memory space. Ideally, the
whole file can be used in an embedding layer to create an embedding matrix, and
for a sequence of entities, it can provide the embedding for each entity. However,
loading this massive file in an embedding layer would require a huge space of GPU
memory if we wish to train the model in GPU. Therefore, as an effective and effi-
cient approach, I used the extracted medical entities (discussed in section 5.3) from
the whole dataset to query through the whole 78 million entity embedding and ex-
tracted the embedding for those medical entities. Then I saved those embedding
and created a separate file of comparatively more diminutive size. This approach
allowed me to use the new file easily to create an embedding layer (see figure 4)
for the model. To this end, I have collected 11247 medical entities from the whole
dataset, and for each of those entities, I have a 200-dimensional embedding vec-
tor obtained from the knowledge graph embedding. In the next step, the splitting
strategy is discussed.

5.5 Splitting Strategy

In the earlier works by Fei et al. [69], and Mullenbach et al. [84], they used a static
technique to split the data into train set, validation set, and test set. For their work,
they used three static files for each set. The files are namely "train_full_hadm_ids.CSV",

27https://github.com/facebookresearch
28Google, Freebase Data Dumps, https://developers.google.com/freebase, Sept. 10, 2018.
29https://www.wikidata.org/wiki/Wikidata:MainP age
30https://github.com/facebookresearch/PyTorch-BigGraphpre-trained-embeddings
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"dev_full_hadm_ids.CSV", and "test_full_hadm_ids.CSV". These files contain a static
list of "HADM_ID." While splitting the whole data into train, validation, and test
set, they referred to their corresponding static hadm_ids list file. In that way, the
datasets contain the records with the "HADM_ID" mentioned in their correspond-
ing static hadm_ids file list. However, I did not follow this process; rather, we used a
dynamic splitting approach to the data. I used the standard approach for the train-
ing dataset and randomly collected 70% of the complete data. I did a 50-50 split
from the reaming data to randomly select 50% of the remaining data as the valida-
tion set, and the rest 50% is taken as test data. So in terms of the full data, the data
split ratio is 70:15:15 for train, validation, and test set. The reason for choosing this
particular ratio is that the model’s performance was the same when I used the static
hadm_ids files. Another reason to use this splitting technique was to incorporate
the "HADM_IDs" that are not present in the static hadm_ids files. For the experi-
ment where I used the "Physician" and "Nursing" notes along with "Discharge sum-
mary" notes, there were some new "HADM_IDs" that came to the dataset because
for those "HADM_IDs" there were no "Discharge Summary" reports. To incorporate
those new "HADM_IDs," the standard splitting approach fitted better.

5.6 Loss Function

Since the task is multi-label binary classification, in this thesis used I used the binary
cross-entropy as the loss function to calculate the loss. The loss function can be
formulated as below.

Loss(D,Y, θ) = −
|L|∑
j=1

Yjlog(Ỹj) + (1− Yj)log(1− Ỹj)

Here, D is the document of word sequence, L is the total number of labels, θ is
the trainable parameters of the model, and Ỹ ∈ R1

0 is the predicted output with
the value of any real number between 0 and 1. The output is then converted to
binary output ∈ 0, 1 using a predefined threshold such as 0.5. Commonly this is
done by simply rounding off the output value. The training process typically aims
to minimize the cross-entropy loss between the ground truth(Y ) value and the pre-
dicted output(Ỹ ) using an optimizer. This thesis experimented with Adam[60] and
AdamW[77] optimizer for the model training.

5.7 Hyper-parameter Tuning

The "KG-MultiResCNN" model is a complex model with multiple hyper-parameters.
Hence, a trade-off amongst the hyper-parameters was required to create the optimal
performing model. To this end, this thesis utilizes several hyper-parameter tuning
options, such as the number of CNN channels, dimension of the word embedding,
a learning rate scheduler, number of medical KG entities used, number of tokens
used, gradient clipping, batch size, and dropout rate selection.
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I started the hyper-parameter tuning empirically following the earlier work of "Mul-
tiResCNN" [69] by Li and Yu. Following their work, "KG-MultiResCNN" used a
learning rate of 0.0001, batch size of 16, a dropout rate of 0.2, and six CNN channels
with the filter size of 3,5,9,15,19,25. However, multiple experiments revealed that
the "KG-MultiResCNN" reaches the optimal performance when using the batch size
of 6 and CNN channels with nine filters of size 3,5,7,9,13,15,17,23,29. For the learn-
ing rate, I used a learning rate scheduler[107] such as "StepLR" that used an initial
learning rate of 0.001; then, after every 8th epoch step, it decreases the learning
rate by a factor of 10. This thesis also explored the gradient clipping technique
that can handle exploding or vanishing gradients while training. However, the ex-
ploding and vanishing gradient problems are often observed in RNN based mod-
els. Since my model is not RNN based, the experiment did not show significant
performance improvement with gradient clipping. The thesis also experimented
with the word embedding dimensions between 100 and 200, and it is found that
the model worked better with the 100-dimensional word embedding vector gener-
ated by the Word2Vec[83] model. While experimenting for the optimal number of
medical KG entities, it is found that the MIMIC-III discharge summary contains an
average of 28 entities per clinical note. Hence, the model performed best when ap-
plying 30 medical KG entities. Finally, for the number of word tokens, I followed
"MultiResCNN"[69] to use 2500 medical entities. However, while experimenting,
it is discovered that the discharge summary notes contain an average of 1878 to-
kens per note and the model performance showed optimal when using 3000 tokens
for the experiments among the lengths of 2500, 3000, 3500. In addition, the model
also implemented an early stopping mechanism that ensures stopping the training
automatically if there is no improvement for the patience of 10 epochs.

5.8 Baselines

To complete the experiment process, the following conventional and deep learning
models are compared against the "KG-MultiResCNN" model.

• Logistic Regression: As an experiment, Mullenbach et al. [84] used Logistic
Regression (LR) to predict ICD codes using unigram bag-of-words vector for
all words in the MIMIC-III text data.

• SVM: Perotte et al. [94] experimented with hierarchical and flat ICD code pre-
diction tasks using Support Vector Machine (SVM). Text notes from MIMIC-II
data found that the hierarchical prediction worked better than flat ICD predic-
tion. Later Xie et al. [128] used the SVM for hierarchical ICD code prediction
on MIMIC-III data. Their model performed moderately with 10,000 unigram
word vectors and with Tf-idf weighting.

• CNN: Kim et al.[59] was the pioneer for developing a 1-D convolutional neural
network for sentence classification. Mullenbach et al. [84] experimented with
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the performance of 1D-CNN on classifying ICD codes from MIMIC-III clinical
notes.

• Bi-GRU: Cho et al.[22] first introduced the Bidirectional Gated Recurrent Neu-
ral Network (Bi-GRU) for text classification. Later Mullenbach et al. [84]
achieved modest success while applying the Bi-GRU for ICD classification
with MIMIC-III clinical notes.

• C-MemNN: Prakash et al.[99] introduced the The Condensed Memory Neural
Network (C-MemNN) that used the memory network[99] and iterative con-
densed memory network[109] together. The model claimed to achieve a good
result on the MIMIC-III 50 code dataset. However, the model was not evalu-
ated with the F1-score.

• C-LSTM-Att: Shi et al.[105] used an LSTM based language model called the
Character-aware LSTM-based Attention (C-LSTM-Att). The model used an at-
tention mechanism to handle the mismatch between notes and ICD codes. The
model was used to predict the top 50 ICD codes from the MIMIC-III dataset.

• LEAM: Wang et al.[122] proposed a text classification model called the Label
Embedding Attentive Model (LEAM) that predicts the top 50 ICD codes from
the MIMIC-III dataset. The model used projects the embedding of words and
labels in the same latent vector space and calculates the similarities between
the embeddings.

• CAML: Mullenbach et al. [84] introduced the Convolutional Attention Net-
work for Multi-Label classification (CAML) for ICD code classification using
MIMIC-III notes. The model used one convolution layer and a label attention
mechanism. The model achieved high performance for multi-label ICD code
classification.

• DR-CAML: As an extension of CAML, Mullenbach et al. [84] introduced the
Description Regularized CAML (DR-CAML). The model used the text descrip-
tion of the codes for better prediction accuracy.

• MultiResCNN: As the current state-of-the-art, the Multi-Filter Residual Con-
volutional Neural Network (MultiResCNN) was introduced by Li and Yu[69].
The model used multiple convolution filters followed by one residual neural
network to predict ICD codes from free-text clinical notes. In addition, the
model used a label attention mechanism for better prediction accuracy. As a
result, the model achieved high performance in predicting full and top 50 ICD
codes from MIMIC-III clinical notes.
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6 Evaluation

The proposed model is a binary multi-class classifier that means the predicted re-
sults for different ICD codes will be in the range of zero to one. The prediction value
for an ICD code should be near 1 for the patients at higher risk to the disease corre-
sponding to that ICD code. It is customary to evaluate this kind of binary decision
model at a range of thresholds pτ ∈ [0; 1] for the decision p > pτ and then report
the results in the form of receiver operating characteristic (ROC) curves, area under
ROC (AUROC). However, for our case, even though discrimination is an important
statistical property, it may not properly address clinical usefulness [89] [79] [113],
[115] [121] [108]. For example, a false negative decision can cause greater harm than
a false positive decision. In that case, a model with high sensitivity may be prefer-
able to a model with high specificity and low sensitivity, even though the model
might have, say, a higher AUROC. In general terms, a model is clinically useful if its
decisions for patients lead to a better ratio between benefits and harms than not us-
ing the model. In this kind of situation, to evaluate a model, we needed to make sure
the model should have good precision and recall both. Given all these conditions,
f1-score is considered to be the best metric for our model as it is the harmonic mean
between precision and recall. Another reason to choose the f1-score as the primary
evaluation metric is because of the comparison flexibility amongst other models.
Past research works and baseline models used f1-score as their primary evaluation
metric. So, to compare my result with other models’ results, it was necessary to use
f1-score. As the task is a multi-label prediction, micro and macro averaging strate-
gies are adopted for better computation of the average score among different labels.
Since there can be more samples for a particular label, the micro averaging strategy
seemed important as it calculates the average aggregating each label’s contribution.
Whereas, in the macro averaging strategy, each label is treated independently and
then takes the average overall labels.

The model evaluation criteria are set as below.

• Based on Codes count: As mentioned by Huang et al.[54] in their paper, it is
observed from the MIMIC-III data that ICD codes follow the Zip’s law pattern.
That means most of the notes contribute to only a few ICD Codes. Two sets
of data were prepared for the evaluation by adopting the baseline approach to
evaluate the model based on the code count. The first dataset for evaluation
contains the notes that cover all the ICD codes present in the whole MIMIC-
III dataset. Whereas, the second one is a subset of the whole notes set that
covers the top 50 frequently occurring ICD codes. The table 2 shows that out
of all the 15 notes category present in the MIMIC-III data, only "Discharge
summary" notes itself cover about 90% of the total codes present in the data.
Table 1 shows that total of 52726 "Discharge summary" notes for each unique
hospital admission covers total 6918 unique diagnosis ICD codes. Whereas,
out of all "Discharge summary" notes almost 85% of the notes cover only the
top 50 ICD codes, making most of the ICD codes very rare. The two created
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datasets are split into train, validation, and test set. Table 3 shows the data
split values for both full and 50 codes. Separate experiments are carried on the
model for both datasets. The datasets are applied on the baseline approach set-
ting to compare the results between the baseline approach and the proposed
approach of this thesis. For the baseline approach "MultiResCNN"[69], the
word embeddings are prepared by training the word2vec model. The embed-
dings are then passed through six parallel CNN networks with filter sizes of
3,5,9,15,19,25. Each CNN filter used one residual network to pass the data into
a label attention layer and the final classifier layer. Whereas, for this thesis
modeling approach, the process is followed as mentioned in the experiment
section (section 5). This evaluation approach allowed the models to compare
based on code prediction tasks.

Dataset Hospital Admission
Discharge Summary

Coverage (%)

full codes
(6918 codes)

52726 90.34

top-50 codes 49354 84.56

Table 2: MIMIC-III Code coverage statistics only for "Discharge summary" notes
[54].

Data Split Samples Average codes

full-label set
train 36906 5.40

validation 7910 5.40

test 7910 5.41

50-label set
train 34547 5.40

validation 7404 5.40

test 7403 5.40

Table 3: Data split configuration for full-codes and top-50 codes with "Discharge
summary" notes only.

• Based on Notes type: The proposed model of the thesis is also evaluated on
the basis of note types. In the MIMIC-III dataset, there are 14 categories of
notes available. Out of those 14 categories, past approaches only used the
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notes with the category "Discharge summary." However, as a different eval-
uation approach, this thesis utilizes the "Physician" and "Nursing" category
notes along with the "Discharge summary" notes. The intuition is that the
"Nursing" and "Physician" notes are detailed observation reports of a patient’s
admission. These reports can provide valuable information on patients’ health
conditions and help in better ICD code prediction. To use the "Nursing" and
"Physician" notes for model evaluation, this thesis approached to create three
more datasets:
1) The first dataset contains only "Discharge summary" notes. (Table 2)
2) The second one contains data from "Discharge summary," "Nursing," and
"Physician" notes together. (Table 4)
3) The final dataset contains text data only from "Nursing" and "Physician"
notes. (Table 5)

Dataset Hospital Admission
DS+Nursing+

Physician Coverage (%)

full codes
(6919 codes)

52985 90.78

top-50 codes 49555 84.91

Table 4: Code coverage statistics for "Discharge summary"+"Nursing"+"Physician"
notes.

Dataset Hospital Admission
Nursing+

Physician Coverage (%)

full codes
(4216 codes)

9070 15.54

top-50 codes 8306 14.74

Table 5: Code coverage statistics for "Nursing"+"Physician" notes.

All the datasets followed the same experimental setting mentioned in the ex-
periment section (section 5). The data splitting strategy for the combined "Dis-
charge summary", "Nursing," and "Physician" notes are shown in table 6. And
the splitting strategy for only "Nursing" and "Physician" notes are shown in
table 7.

39



Data Split Samples Average codes

full-label set
train 37088 5.41

validation 7948 5.41

test 7949 5.41

50-label set
train 34688 5.41

validation 7434 5.41

test 7433 5.41

Table 6: Data split configuration for full-codes and top-50 codes with "Discharge
summary"+"Nursing"+"Physician" notes.

Data Split Samples Average codes

full-label set
train 6349 5.44

validation 1360 5.44

test 1361 5.43

50-label set
train 6022 5.43

validation 1290 5.43

test 1291 5.44

Table 7: Data split configuration for full-codes and top-50 codes with "Nurs-
ing"+"Physician" notes.

• Performance: As an evaluation criterion, this thesis also compares the model’s
computational cost based on different categories such as the total number
of trainable parameters, number of epochs, and the average time taken for
a training epoch. These different categories indicate how complex a model
is. For example, a very complex model is expected to have a longer training
time than a comparatively less complex one. On the other hand, a complex
model tends to converge faster than a less complex model for the same learn-
ing rate. That means a complex model takes a fewer number of epochs to
converge. Furthermore, a higher number of epochs would eventually over-fit
the model. In the result section (section), the performance efficiency of the
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model for different settings is compared to find the best model setting. The re-
sults section also discusses the performance comparison between the baseline
and proposed models.

• Diagnosis ICD and Procedural ICD prediction: Since this thesis mainly fo-
cused on disease diagnosis, it approached the task by predicting only diagno-
sis ICD codes. However, the baseline approaches used a generic approach to
predict ICD codes that include both diagnosis ICD codes as well as procedural
ICD codes. This thesis experimented with an additional data processing step
to include procedural ICD codes for a fair comparison between the baseline
and proposed models. Following the work of Fei Li and Hong Yu [69], this
thesis includes the "PROCEDURAL_ICD.CSV" file to get the procedural ICD
codes for each hospital admission of a patient. The procedural ICD codes and
the diagnosis ICD codes for a patient admission are combined to form the fi-
nal list of ICD codes for the unique hospital admission of a patient. The new
ICD codes list is then used as the prediction labels for a discharge summary
input text. Table 8 shows the ICD codes values when using only diagnosis
ICD and both diagnosis and procedural ICD codes. Finally, the data is split
into train, validation, and test set following a similar data splitting approach
(section 5.5). The new dataset is used in different modeling approaches to get
comparative results.

Coverage Patients
Hospital

Admission
ICD-9 Codes

"Discharge Summary"
notes ( Diagnosis ICD )

41127 52726 6918

"Discharge Summary"
notes ( Diagnosis + Pro-
cedural ICD )

41127 52726 8917

Table 8: MIMIC-III Diagnosis and Procedural code coverage statistics.
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7 Results

This section describes the results of each category mentioned in the Evaluation sec-
tion (section 6). Following the baseline model approach of "MultiResCNN"[69], each
experiment is conducted for different random parameter initialization seeds. The
average value of multiple experiment results with a standard deviation is shown in
the tables.

• Based on Codes count: As mentioned in the evaluation section, the proposed
"KG-MultiResCNN" model is evaluated against the baseline approach of "Mul-
tiResCNN" to predict the diagnosis ICD codes using the "Discharge summary"
notes. Table 9 and table 10 show the result comparison between the two ap-
proaches. It can be seen from the result shown in table 9 that "KG-MultiResCNN"
achieved better macro and micro f1-score compared to the state-of-the-art base-
line model "MultiResCNN." When applied to the "full code" dataset, "KG-
MultiResCNN" achieved the micro F1-score of 53.8%, increasing a margin of
1.1 over the state-of-the-art. Whereas, for the macro F1-score comparison,
"KG-MultiResCNN" achieved 10.2%, outperforming the state-of-the-art by a
margin of 1.95. Similarly, table 10 shows that when applied to the "50-code"
dataset, "KG-MultiResCNN" increased with a margin of 1.46 over the state-
of-the-art for micro F1-score comparison. Whereas, for macro F1-score com-
parison, "KG-MultiResCNN" achieved a score of 64.21%, a significant increase
with a margin of 3.11 over the state-of-the-art. The results also show a stable
standard deviation for both the "full-codes" and "50 codes" experiment

Model
Full Codes

F1-Score (Micro) (%) F1-Score (Macro) (%)

MultiResCNN 52.7 8.25

KG-MultiResCNN
53.8
±0.1

10.2
± 0.1

Table 9: Models result comparison for full diagnosis ICD code with "Discharge sum-
mary" notes. ± indicates standard deviations.

• Based on Notes type: As discussed in the evaluation section, the "KG-MultiResCNN"
model is experimented with and evaluated with multiple note types. Since all
the past research and the state-of-the-art model only used "Discharge sum-
mary" notes, it was essential to see how the "KG-MultiResCNN" model works
with other notes types. Table 11 shows a comparative results for the experi-
ment of "KG-MultiResCNN" model with different notes combination for the
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Model
Top-50 Codes

F1-Score (Micro) (%) F1-Score (Macro) (%)

MultiResCNN 67.6 61.1

KG-MultiResCNN
69.06
±0.1

64.21
± 0.1

Table 10: Models result comparison for top-50 diagnosis ICD code with "Discharge
summary" notes. ± indicates standard deviations.

full code prediction setting. The result shows that the model performed the
best when using only "Discharge summary" notes. The model worked rather
poorly for the combination of "Physician" and "Nursing" notes. This is be-
cause the combination of "Physician" and "Nursing" notes does not cover a
good amount of codes in MIMIC-III data. Table 5 indicates that the "Physician"
and "Nursing" note coverage is very less. This means, even if there are mas-
sive numbers of "Physician" and "Nursing" notes present in MIMIC-III data,
they actually cover a very less number of patient’s hospital admission. For the
"Discharge summary" notes combined with "Nursing" and "Physician" notes,
the model was assumed to have a good result. However, the model showed a
limitation when applying the three notes combination as it performed poorly
against the experiment with only "Discharge summary" notes. When apply-
ing the three notes combination, the model’s micro F1-score decreased with
a margin of 0.4, and the macro accuracy decreased with a margin of 1.4. A
possible reason would be that the model was optimally set to handle a text
of length 3000 tokens. Furthermore, when all three types of notes were com-
bined, the notes’ length became huge, and the model needed more tokens to
get the proper text inference. However, using more tokens usually depends
on the GPU computational capacity and model complexity. A more sophisti-
cated model with more layers would work better with a large number of word
tokens. To maintain the scope and time limitation of the thesis, I did not in-
vestigate more on using a large number of tokens. Table 12 shows the similar
result when applying the model with the three notes combination for top 50
code prediction setting. In 50 code prediction also, the model performed the
best with only "Discharge summary" notes. The reason for this is the same as
discussed for the full code setting. As a future improvement, a more sophisti-
cated model that can use more word tokens can be investigated.
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Notes Type
Full Codes

F1-Score (Micro)
(%)

F1-Score (Macro)
(%)

"Discharge summary"
notes

53.8 10.2

"Discharge summary"+
"Nursing"+"Physician" notes

53.4 8.8

"Nursing"+"Physician"
notes

30.5 2.46

Table 11: "KG-MultiResCNN" result comparison for full diagnosis ICD code with
multiple note combinations.

Notes Type
Top-50 Codes

F1-Score (Micro)
(%)

F1-Score (Macro)
(%)

"Discharge summary"
notes

69.06 64.21

"Discharge summary"+
"Nursing"+"Physician" notes

68.19 61.83

"Nursing"+"Physician"
notes

48.32 38.13

Table 12: "KG-MultiResCNN" result comparison for top-50 diagnosis ICD code with
multiple note combinations.

• Performance: Table 13 shows the comparison between "KG-MultiResCNN"
and the state-of-the-art baseline for different categories as mentioned in the
evaluation section (section 6). The result showed that "KG-MultiResCNN"
took only 15 epochs to converge, whereas the state-of-the-art "MultiResCNN"
took 26 epochs to converge. The result also showed that both the models have
the same number of training parameters. However, "KG-MultiResCNN" took
about 2185 seconds for each epoch to finish whereas, "MultiResCNN" took
about a half of the time for "KG-MultiResCNN." A possible explanation would
be that the complexity of the "MultiResCNN" model is much less than the "KG-
MultiResCNN" model. The "KG-MultiResCNN" model is more complex and
sophisticated as it has two embedding layers, unlike the baseline model’s only
one embedding layer. Then the baseline model used six convolution chan-
nels, whereas "KG-MultiResCNN" used nine. Finally, instead of one residual
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layer, the "KG-MultiResCNN" used two residual layers for each convolution
channel.

Categories MultiResCNN KG-MultiResCNN

Trainable Parameters
(million)

11.9 11.9

Training Time
(seconds/epoch)

1026 2185

No of epochs 26 15

Table 13: Model performance comparison based on categories.

• Diagnosis ICD and Procedural ICD prediction: As discussed in the evalua-
tion section (section 6), this thesis mainly focused on predicting only diagnosis
ICD codes using free-text data. However, for the sake of fairness, additional
data processing and experiments were carried out to compare with the base-
line approaches that are modeled to predict both diagnosis and procedural
ICD codes.
Table 14 shows the comparative results between the baseline approaches (sec-
tion 5.8) and "KG-MultiResCNN". It is evident from the results that "KG-
MultiResCNN" significantly outperformed over all the baseline approaches,
including current state-of-the-art "MultiResCNN." Even with the full diagno-
sis and procedural ICD coding setting, "KG-MultiResCNN" acquired a micro
F1-score of 56.1%, surpassing the state-of-the-art "MultiResCNN" by a margin
of 0.9. Whereas, for the macro F1-score, "KG-MultiResCNN" acquired a score
of 10.2, significantly surpassing the "MultiResCNN" by a margin of 1.7.
Similarly, the table 15 shows the comparative result between "KG-MultiResCNN"
and the baseline approaches in top 50 diagnosis and procedural ICD code pre-
diction setting. The result depicts that even in 50 code prediction settings,
the "KG-MultiResCNN" significantly outperformed the baseline models, in-
cluding the state-of-the-art "MultiResCNN." "KG-MultiResCNN" achieved the
micro F1-score of 69.5%, an increase of margin of 2.5 over "MultiResCNN."
Whereas, for macro F1-score, "KG-MultiResCNN" obtained a score of 64.5%,
greatly surpassing the state-of-the-art "MultiResCNN" by a margin of 3.9.
The results also show a stable standard deviation for both the "full-codes" and
"50 codes" experiments for diagnosis and procedural ICD code prediction.
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Model
Full Codes

F1-Score (Micro) (%) F1-Score (Macro) (%)

LR[84] 27.2 1.1

Flat SVM[94] 39.7 -

Hierarchy SVM[94] 44.1 -

CNN[59] 41.9 4.2

Bi-GRU[22] 41.7 3.8

CAML[84] 53.9 8.8

DR-CAML[84] 52.9 8.6

MultiResCNN[69] 55.2 8.5

KG-MultiResCNN
56.1
±0.1

10.2
± 0.1

Table 14: Models result comparison for full diagnosis and procedural ICD code with
"Discharge summary" notes. ± indicates standard deviations.
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Model
Top-50 Codes

F1-Score (Micro) (%) F1-Score (Macro) (%)

LR[84] 53.3 47.7

C-LSTM-Att[105] 53.2 -

CNN[59] 62.5 57.6

Bi-GRU[22] 54.9 48.4

LEAM[122] 61.9 54.0

CAML[84] 61.4 53.2

DR-CAML[84] 63.3 57.6

MultiResCNN[69] 67.0 60.6

KG-MultiResCNN
69.5
±0.1

64.5
± 0.1

Table 15: Models result comparison for top-50 diagnosis and procedural ICD code
with "Discharge summary" notes. ± indicates standard deviations.
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8 Discussion and Limitation

This thesis showed quite an improvement over past research in diagnosis ICD code
prediction from clinical free-text data. Particularly with the discharge summary
notes, the model performed the best in predicting the diagnosis ICD codes. This the-
sis chose the discharge summary notes because the discharge summary notes cover
almost 85% of patients’ hospital admission. Furthermore, the discharge summary
notes contain vital information about the patient, such as demographics, history
of illness, health condition during admission, and other lab test information. The
proposed model of this thesis can be viewed as the extension of "MultiResCNN"
[69] that used six CNN channels with a residual block for a multi-label text clas-
sification task. In particular, in this thesis, the "MultiResCNN" [69] model is im-
proved by adding an additional embedding layer. The extra embedding layer pro-
vides the knowledge graph embedding of medically significant entities from the
text. Additionally, the proposed model used nine convolution channels and two
residual blocks for better feature representation. The model does the job of differ-
ential diagnosis in a multi-label binary classification setting by predicting signifi-
cant diagnosis ICD codes as 1 and rejecting the non-significant codes as 0. Several
experiments were done on the model to find the optimal operation setting of the
model. For the input word embedding, the model was tested with 100-dimensional
and 200-dimensional word embedding vectors, and it was revealed that the model
worked better with 100-dimensional embedding vectors. The number of word to-
kens played a significant role as well. The model experimented with 2500, 3000,
and 3500 word tokens. It turned out the model performed better with a maximum
of 3000 word tokens from the clinical notes. Since the word embedding vector and
the KG embedding vector of the medical terms combined serve as the input to the
model, the thesis experimented for the optimal number of medical entities to be
used from the text. The experiment showed that using a maximum of 30 medical
entities provides the best performing result. This research also discovered that the
number of CNN channels and residual blocks hugely impact the model’s perfor-
mance. The experiments showed that for a higher number of word tokens, a higher
number of CNN channels perform better. To this end, in this thesis, for 3000 word
tokens, nine CNN channels performed best. The experiments also showed that
the model performed optimally with two residual layers for the combined input
of word embeddings and KG embeddings. The model showed comparable com-
putational cost against the state-of-the-art "MultiResCNN" [69] with training time
about twice than that of "MultiResCNN" [69]. This is reasonable given the fact that
the thesis model is more complex with more CNN channels and double the number
of residual blocks. Irrespective of the success, the experiments revealed some im-
portant limitations in this thesis.
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Limitations

The experiment indicated that for a higher number of word tokens, a higher number
of CNN channels and a higher number of residual layers increase the model per-
formance. This finding encouraged me to include "Nursing" and "Physician" notes
along with "Discharge summary" notes for this research. However, more CNN chan-
nels and more residual layers mean higher model complexity. Moreover, loading a
complex model requires higher GPU memory. Unfortunately, the GPU memory
was limited for this thesis, which restricted the model from performing well with
the colossal size of notes. Moreover, this limitation restricted me from creating the
model with a maximum of nine CNN channels and two residual blocks. The thesis
also spends a considerable amount of time researching Bert[31] model. This thesis
implemented three versions of the Bert model that uses sentence embedding, word
embedding from the last hidden layer, and combined word embedding for the last
four hidden layers for the clinical notes classification task. However, the Bert models
poorly predicted ICD codes from clinical discharge summary notes.
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9 Conclusion and Future Improvements

This thesis introduces "KG-MultiResCNN," a multi-channel convolutional network
model for multi-label disease diagnosis prediction. The model performs the dis-
ease diagnosis by automatically predicting the ICD codes related to free-text EHR
notes. As a universal approach, this thesis utilized the free-text EHR notes because
the notes are unstructured in nature and do not maintain any standard guideline.
The model finds essential features from the clinical notes to predict the ICD codes
significant for that note. Furthermore, to strengthen the vital feature extraction,
the model utilizes the Tf-idf weighting of each word in the text. The weighting is
done by multiplying (scalar vector multiplication) the Tf-idf score of each word to
their corresponding word embedding vector. The model also utilizes the knowl-
edge graph embeddings of medically significant word tokens from the Wikidata
knowledge graph as a novel approach. A pre-trained Bert model is used for the
medical NER task. The NER model extracts the medical entities from the text. The
medical entities are then used to fetch their corresponding knowledge graph repre-
sentation from a knowledge graph embedding system called "PyTorch-BigGraph."
The "PyTorch-BigGraph" is trained on the Wikidata knowledge graph, and that can
produce a knowledge graph representation for about 78 million entities. The com-
bined representation of word embeddings and knowledge graph embeddings of
medical entities is used in the proposed model of this thesis for the prediction of
diagnosis ICD codes. This thesis used a differential diagnosis approach for disease
prediction where the model predicts the relevant ICD codes while rejecting the non-
related codes for a clinical note. The model also used a label attention mechanism
where a label-specific weighting strategy was adopted. The label attention allowed
the model to find the essential words for an ICD code and focus on those words for
better prediction.

Several experiments are done on the model with MIMIC-III clinical notes. The
experiments revealed that the model with knowledge graph embedding surpasses
the result of the state-of-the-art model. Furthermore, further experiments disclosed
that additional convolution channels and additional residual layers significantly im-
proved the model’s performance. As a comparative study, the proposed model is
evaluated against the current state-of-the-art "MultiResCNN" to predict the diagno-
sis ICD codes. The result indicated that the proposed model significantly outper-
formed the current state-of-the-art. It is also found that in MIMIC-III data, the top
50 ICD codes are covered by about 85% of all discharge summary notes. Empir-
ically a top-50 codes dataset was also prepared for the model evaluation, and the
results showed that even for the top-50 codes, the proposed model outperformed
the "MultiResCNN" model. For the fair comparison between the state-of-the-art
"MultiResCNN," this thesis utilized the procedural ICD codes combined with the
diagnosis ICD codes from MIMIC-III data. Two new datasets are prepared further
for the full-code prediction and top-50 code prediction. The result showed that even
for the combined diagnosis and procedural ICD code prediction task, the proposed
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model significantly improved over the state-of-the-art for both full-code and top-50
code prediction. Irrespective of the success of the thesis, there lies a good ground of
improvement over the current thesis model.

Future improvements

Following the lines of Li and yu[69], the thesis could improve significantly with the
proper inclusion of Bert embedding. To be specific, exploring recurrent Transformer[29]
and hierarchical BERT[138] for the ICD code prediction seems to be exciting re-
search. Furthermore, while experimenting with this thesis model, it is found that the
ICD codes follow a structured hierarchy. For example, the ICD code 084.8 indicates
the disease "Blackwater fever," a sub-disease under the parent disease "Malaria" of
ICD code 084. Since MIMIC-III provides the exact or the most specific ICD codes,
the thesis model is trained to predict the specific diseases such as "Blackwater fever"
mentioned in the last example. However, an exciting approach could be to predict
the parent ICD code when the system cannot precisely predict the actual ICD code.
Therefore, a hierarchical ICD prediction task sounds like a compelling approach for
the future. Another future improvement of this thesis could be to include a clini-
cal knowledge graph. In this thesis, I used the Wikidata knowledge graph, which is
considered generic as it contains all kinds of entities. Therefore, a clinical knowledge
graph with only clinical entities will better serve the prediction task.
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